
King Abdulaziz University

4.3 How Derivatives Affect The Shape of a
Graph

Dr. Hamed Al-Sulami

��� �� ���� �	
� �
��� �� .� ��� �	�� ���
��� ������ ��� �	�
��� ������ �
�����  ��� :�������

c© 2011 hhaalsalmi@kau.edu.sa http://hhaalsalmi.kau.edu.sa

Prepared: May 14, 2011 Presented: May 14, 2011

❘ ➡ ➡ ➦ � � � � ➥ ➡ �

http://www.kau.edu.sa
mailto:hhaalsalmi@kau.edu.sa
http://hhaalsalmi.kau.edu.sa


c©Hamed Al-Sulami 2/12

2. How Derivatives Affect The Shape of a Graph

What Does f ′ Say About f

Definition 2.1: [Increasing and Decreasing Functions]

1. A function f is increasing on an interval I if for any x1, x2 ∈ I with x1 < x2 ⇒ f(x1) < f(x2).

2. A function f is decreasing on an interval I if for any x1, x2 ∈ I with x1 < x2 ⇒ f(x1) > f(x2).

3. A function f is constant on an interval I if for any x1, x2 ∈ I with x1 < x2 ⇒ f(x1) = f(x2).

A function f is increasing if , as x moves to the right, its graph moves up and is decreasing if its
graph moves down and it is constant if the graph moves horizontally. See Figure
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Theorem 2.1: [Test for Monotonic Functions]
Let f be a continuous function on the closed interval [a, b], differentiable on the open interval
(a, b).

1. If f ′(x) > 0 for all x ∈ (a, b), then f is increasing on an interval (a, b).

2. If f ′(x) < 0 for all x ∈ (a, b), then f is decreasing on an interval (a, b).

Guidelines for finding intervals on which a function f is monotonic

To find the intervals on which a function f is monotonic:

1. Find the critical numbers of f.

2. The critical numbers will divide the domain into subintervals.

3. Test the sign of f ′ on each subinterval you got in step 2.

4. Positive sign means f is increasing and negative sign means f is decreasing.

❘ ➡ ➡ ➦ � � � � ➥ ➡ �
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Example 1. Find the intervals on which f(x) = 3x4 − 4x3 − 12x2 + 1 is increasing or
decreasing.

Solution: Note that f is a polynomial, then it is continuous on R. So to find the critical
numbers, set f ′(x) = 0.

f ′(x) = 0 ⇒ 12x3 − 12x2 − 24x = 0 ⇒ 12x(x2 − x − 2) = 0 ⇒ 12x(x − 2)(x + 1) = 0

Hence x = 0, x = 2, x = −1. Hence f ′(x) = 0 if x = −1, 0, 2. So the critical numbers are
x = −1, 0, 2. To find the intervals of increasing and decreasing we find the sign of each factor of
f ′(x) and we get the following chart.

� � �−1 0 2sign of −∞ ∞
12x − − + +

x + 1 − + + +

x − 2 − − − +

f ′(x) − + − +

Concl Dec. Inc. Dec. Inc.

So f is increasing on the intervals (−1, 0) ∪ (2,∞) anddecreasing on (−∞, 1) ∪ (0, 2). See the

graph of f .❍
? �
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The First Derivative Test

Theorem 2.2: [Test for Monotonic Functions]
Let f be a continuous function on the closed interval [a, b], and let c ∈ (a, b) be a critical number
for f. If f is differentiable on the open interval (a, b) except possibly at c.

1. If f ′(x) > 0 for all a < x < c, and f ′(x) < 0 for all c < x < b, (f ′(x) changes from positive to

negative at c), then f(c) is a local maximum.

2. If f ′(x) < 0 for all a < x < c, and f ′(x) > 0 for all c < x < b, (f ′(x) changes from negative to

positive at c ), then f(c) is a local minimum.

3. If f ′(x) does not change sign atc,then f(c) has no local extreme.
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Example 2. Find the local extreme for f(x) = 3x4 − 4x3 − 12x2 + 1.

Solution: Note that f is a polynomial, then it is continuous on R. So to find the critical
numbers, set f ′(x) = 0.

f ′(x) = 0 ⇒ 12x3 − 12x2 − 24x = 0 ⇒ 12x(x2 − x − 2) = 0 ⇒ 12x(x − 2)(x + 1) = 0

Hence x = 0, x = 2, x = −1. Hence f ′(x) = 0 if x = −1, 0, 2. So the critical numbers are
x = −1, 0, 2.

� � �−1 0 2sign of −∞ ∞
12x − − + +

x + 1 − + + +

x − 2 − − − +

f ′(x) − + − +

Concl Dec. Inc. Dec. Inc.

So f is increasing on the intervals (−1, 0) ∪ (2,∞) anddecreasing on (−∞, 1) ∪ (0, 2). It follows

from the first derivative test that f has a local maximum at x = 0 with value f(0) = 1. Also f

has a local minimum at x = −1 and x = 2 with value f(−1) = −4 and f(2) = −31. See the

graph of f .❍
? �
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Example 3. Find the local extreme for f(x) =
x

2
+ sin x in the interval (0, 2π).

Solution: Note that f is continuous on (0, 2π). To find the critical numbers, set f ′(x) = 0. Now,

f ′(x) =
1

2
+ cos x ⇔ f ′(x) = 0 ⇔ 1

2
+ cosx = 0 ⇔ cos x =

−1

2
⇔ x =

2π

3
, x =

4π

3
.

Hence f ′(x) = 0 if x =
2π

3
, x =

4π

3
∈ (0, 2π). So the critical numbers in the interval (0, 2π) are

x =
2π

3
, x =

4π

3
. To find the intervals of increasing and decreasing we find the sign of f ′(x) and

we get the following chart.

�� � � ��
2π
3

4π
3

0 2π
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π
2 π 3π

2

f ′(Test Value) f ′(π
2 ) = 1

2 f ′(π) = −1
2 f ′(3π

2 ) = 1
2

sign of f ′(x) + − +

Concl Inc. Dec. Inc.

So f is increasing on the intervals (0, 2π/3)∪ (4π/3, 2π) and decreasing on (2π/3, 4π/3). It follows

from the first derivative test that f has a local maximum at x =
2π

3
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3
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=

π

3
+

√
3

2
.

Also f has a local minimum at x =
4π

3
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(
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3

)
=

2π

3
−

√
3

2
. See the graph of f .❍
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What Does f ′′ Say About f

Definition 2.2: [Concavity]
Let f be be differentiable on an open interval I. Then

1. The graph of f is concave up on I if f ′ is increasing on I.

2. The graph of f is concave down on I if f ′ is decreasing on I.

Note 1: We used following graphical interpretation of concavity:

1. A Function is concave up on an open interval if the graph of it lies above its tangent lines.

2. A Function is concave down on an open interval if the graph of it lies below its tangent lines.
See Figures
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Theorem 2.3: [Concavity Test]
Let f be a function such that f ′′(x) exist on the open interval I.

1. If f ′′(x) > 0 for all x ∈ I, then f is concave up on I.

2. If f ′(x) < 0 for all x ∈ I, then f is concave down on I.

Guidelines for Finding Intervals of Concavity

To find the intervals of concavity:

1. Find all the values of x for which f ′′(x) = 0 or f ′′(x) is undefined.

2. The values of x you find in step 1 will divide the domain into subintervals.

3. Test the sign of f ′′ on each subinterval you got in step 2.

4. Positive sign means f is concave up and negative sign means f is concave down.

Definition 2.3: [Points of Inflection]
A point (c, f(c)) on the graph of f is a point of inflection if the following two conditions are
satisfied:

1. f is continuous at c.

2. There is an open interval (a, b) containing c such that the graph of f is concave up on
(a, c) and concave down on (c, b), or vice versa.

❘ ➡ ➡ ➦ � � � � ➥ ➡ �
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Example 4. Find where the graph of f(x) =
1

8
x4 − 1

2
x3 + 1 is concave up and concave

down and the points of inflection.

Solution: Note that f is a polynomial, then it is continuous on R. Now, we find the second

derivative of f , and set f ′′(x) = 0. Hence, f ′(x) =
1

8
· 4x3 − 1

2
· 3x2 ⇒ f ′′(x) =

1

2
· 3x2 − 3

2
· 2x

f ′′(x) =
3

2
x2 − 3x ⇒ f ′′(x) =

3

2
x(x− 2). Hence f ′′(x) = 0 if

3

2
x(x− 2) = 0.

Thus f ′′(x) = 0 if x = 0, x = 2. This will divide the real line to three intervals and we have to test
f ′′(x) in those intervals. The chart below showed the result of the sign of f ′′(x).

� �0 2−∞ ∞
Test Value −1 1 3

f ′′(Test Value) f ′′(−1) = 9
2 f ′′(1) = −3

2 f ′′(3) = 9
2

sign of f ′′(x) + − +

Concl Up Down Up

It follows from the concavity test that the graph of f is concave up in the intervals
(−∞, 0) ∪ (2,∞) and concave down in the interval(0, 2). Also we have inflection point at x = 0

and x = 2 with value f(0) = 1 and f(2) = −1. See the graph of f .❍
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The Second Derivative Test

Theorem 2.4: [The Second Derivative Test]
Suppose that f ′′ is continuous on the open interval containing c such that f ′(c) = 0.

1. If f ′′(c) > 0, then f(c) is a local minimum.

2. If f ′′(c) < 0, then f(c) is a local maximum.

�

y = f(x)

Concave Down

f ′′(c) < 0

f ′(c) = 0

c x

y

�

y = f(x)

Concave Up

f ′′(c) > 0

f ′(c) = 0

c x

y

Note 2: Suppose that f is differentiable on the open interval containing c such that f ′(c) =
0. If f ′′(c) = 0, then the Second Derivative Test fails. In such cases, we should use the First
Derivative Test.
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Example 5. Find the local extreme for f(x) = 2 sinx + cos (2x), 0 ≤ x ≤ 2π.

Solution: We start by finding the critical number of f in the interval (0, 2π). Now,

f ′(x) = 2 cosx − 2 sin (2x) Remember sin (2x) = 2 sinx cos x.

= 2 cosx − 4 sinx cosx

= 2 cosx(1 − 2 sinx).

Now, f ′(x) = 0 if 2 cosx(1 − 2 sin x) = 0. Hence f ′(x) = 0 if cosx = 0, or 1 − 2 sin x = 0. Thus

f ′(x) = 0 if cosx = 0, or sin x =
1

2
. Now, in the interval (0, 2π), cosx = 0, if x =

π

2
,
3π

2
. Also, in the

interval (0, 2π), sin x =
1

2
, if x =

π

6
,
5π

6
. Thus the critical numbers of f in the interval (0, 2π) are

x =
π

6
,
π

2
,
3π

2
,
5π

6
. We will use the Second Derivative Test, so we find f ′′(x) = −2 sin x− 4 cos(2x).

f ′′
(π
6

)
= −3 < 0, hence f

(π
6

)
=

3

2
is a local maximum.

f ′′
(
5π

6

)
= −4 < 0, hence f

(
5π

6

)
=

3

2
is a local maximum.

f ′′
(π
2

)
= 2 > 0, hence f

(π
2

)
= 1 is a local minimum.

f ′′
(
3π

2

)
= 6 > 0, hence f

(
3π

2

)
= −3 is a local minimum.

See the graph of f .❍
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