Properties of Riemann Integral and Class of Integrable Functions

Dr.Hamed al-Sulami

September 26, 2011

Let $[a, b] \subseteq \mathbb{R}$ be a closed and bounded interval, $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$, and $f:[a, b] \rightarrow \mathbb{R}$ be bounded function. We use the familiar notation
$M_{k}=\sup \left\{f(x) \mid x \in\left[x_{k-1}, x_{k}\right]\right\}$, and $m_{k}=\inf \left\{f(x) \mid x \in\left[x_{k-1}, x_{k}\right]\right\}$.
Note that

$$
U(f, P)-L(f, P)=\sum_{k=1}^{n}\left(M_{k}-m_{k}\right) \triangle x_{k}
$$

Theorem 2.1: [Integrability of Monotone Functions]

Let $f:[a, b] \rightarrow \mathbb{R}$ be monotone function on $[a, b]$. Then f is integrable on $[a, b]$.
Discussion: Suppose f is increasing on $[a, b]$. Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$ such that $x_{k}-x_{k-1}=$ $\frac{b-a}{n}$ for $k=1,2, \ldots, n$. Since f is increasing on $\left[x_{k-1}, x_{k}\right]$, then $m_{k}=f\left(x_{k-1}\right)$ and $M_{k}=f\left(x_{k}\right)$. Hence

$$
\begin{aligned}
U(f, P)-L(f, P) & =\sum_{k=1}^{n}\left(M_{k}-m_{k}\right) \triangle x_{k} \\
& =\sum_{k=1}^{n}\left[f\left(x_{k}\right)-f\left(x_{k-1}\right)\right]\left[\frac{b-a}{n}\right] \\
& =\frac{b-a}{n} \sum_{k=1}^{n}\left[f\left(x_{k}\right)-f\left(x_{k-1}\right)\right] \\
& =\frac{b-a}{n}\left[\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right)+\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)+\ldots+\left(f\left(x_{n}\right)-f\left(x_{n-1}\right)\right)\right] \\
& =\frac{b-a}{n}\left[f\left(x_{n}\right)-f\left(x_{0}\right)\right] \\
& =\frac{b-a}{n}[f(b)-f(a)] .
\end{aligned}
$$

So we need to choose $n \in \mathbb{N}$ such that $\frac{b-a}{n}[f(b)-f(a)]<\varepsilon$.
Proof: Suppose f is increasing on $[a, b]$. Choose $n \in \mathbb{N}$ such that $\frac{b-a}{n}[f(b)-f(a)]<\varepsilon$. Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$ such that $x_{k}-x_{k-1}=\frac{b-a}{n}$ for $k=1,2, \ldots, n$. Now,

$$
U(f, P)-L(f, P)=\frac{b-a}{n}[f(b)-f(a)]<\varepsilon
$$

Hence f is integrable.

Theorem 2.2: [Integrability of Continuous Functions]

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous function on $[a, b]$. Then f is integrable on $[a, b]$.

Proof: Since f is continuous on $[a, b]$, then f is uniformly continuous on $[a, b]$. Hence given $\varepsilon>0$ there exist $\delta>0$ such that if $x, y \in[a, b]$ and $|x-y|<\delta \Rightarrow|f(x)-f(y)|<\frac{\varepsilon}{b-a}$. Now, choose $n \in \mathbb{N}$ such that $\frac{b-a}{n}<\delta$. Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$ such that $x_{k}-x_{k-1}=\frac{b-a}{n}$ for $k=1,2, \ldots, n$. Since f is continuous on $\left[x_{k-1}, x_{k}\right]$, then f takes its maximum and minimum at some points in $\left[x_{k-1}, x_{k}\right]$. Hence $m_{k}=f\left(u_{k}\right)$ and $M_{k}=f\left(v_{k}\right)$ for some $u_{k}, v_{k} \in\left[x_{k-1}, x_{k}\right]$.
Hence $\left|v_{k}-u_{k}\right| \leq\left|x_{k}-x_{k-1}\right|=\frac{b-a}{n}<\delta \Rightarrow\left|f\left(v_{k}\right)-f\left(u_{k}\right)\right|<\frac{\varepsilon}{b-a}$.
Therefore

$$
\begin{aligned}
U(f, P)-L(f, P) & =\sum_{k=1}^{n}\left(M_{k}-m_{k}\right) \triangle x_{k} \\
& =\sum_{k=1}^{n}\left[f\left(v_{k}\right)-f\left(u_{k}\right)\right]\left[\frac{b-a}{n}\right] \\
& <\frac{b-a}{n} \sum_{k=1}^{n} \frac{\varepsilon}{b-a} \\
& =\frac{b-a}{n} \frac{n \varepsilon}{b-a} \\
& =\varepsilon .
\end{aligned}
$$

Hence f is integrable.

Theorem 2.3: [linearity I]

Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable on $[a, b]$. If $c \in \mathbb{R}$, then $c f$ is integrable on $[a, b]$, and

$$
\int_{a}^{b} c f=c \int_{a}^{b} f
$$

Proof: Case 1: $c>0$.
Let $I \subseteq[a, b]$. Now, since

$$
\inf \{(c f)(x): x \in I\}=c \inf \{f(x): x \in I\} \text { and } \sup \{(c f)(x): x \in I\}=c \sup \{f(x): x \in I\}
$$

then

$$
U(c f, P)=c U(f, P) \text { and } L(c f, P)=c L(f, P) \text { for any partition } P \text { of }[a, b]
$$

Let $\varepsilon>0$ be given. Since f is integrable \exists a partition P_{ε} such that $U\left(f, P_{\varepsilon}\right)-L\left(f, P_{\varepsilon}\right)<\frac{\varepsilon}{c}$.
Now,

$$
\begin{aligned}
U\left(c f, P_{\varepsilon}\right)-L\left(c f, P_{\varepsilon}\right) & =c U\left(f, P_{\varepsilon}\right)-c L\left(f, P_{\varepsilon}\right) \\
& =c\left[U\left(f, P_{\varepsilon}\right)-L\left(f, P_{\varepsilon}\right)\right] \\
& <c \frac{\varepsilon}{c} \\
& =\varepsilon
\end{aligned}
$$

Hence $c f$ is integrable. Now,

$$
\begin{equation*}
c L\left(f, P_{\varepsilon}\right)=L\left(c f, P_{\varepsilon}\right) \leq \int_{a}^{b} c f \leq U\left(c f, P_{\varepsilon}\right)=c U\left(f, P_{\varepsilon}\right) \tag{1}
\end{equation*}
$$

and

$$
L\left(f, P_{\varepsilon}\right) \leq \int_{a}^{b} f \leq U\left(f, P_{\varepsilon}\right)
$$

If we multiply the last inequality by $c>0$ we get

$$
c L\left(f, P_{\varepsilon}\right) \leq c \int_{a}^{b} f \leq c U\left(f, P_{\varepsilon}\right)
$$

Now, using $U(c f, P)=c U(f, P)$ and $L(c f, P)=c L(f, P)$ in the last inequality we have

$$
L\left(c f, P_{\varepsilon}\right) \leq c \int_{a}^{b} f \leq U\left(c f, P_{\varepsilon}\right)
$$

Hence

$$
\begin{equation*}
-U\left(c f, P_{\varepsilon}\right) \leq-c \int_{a}^{b} f \leq-L\left(c f, P_{\varepsilon}\right) \tag{2}
\end{equation*}
$$

Adding (1) and (2) we get

$$
-\left[U\left(c f, P_{\varepsilon}\right)-L\left(c f, P_{\varepsilon}\right)\right] \leq \int_{a}^{b} c f-c \int_{a}^{b} f \leq U\left(c f, P_{\varepsilon}\right)-L\left(c f, P_{\varepsilon}\right) \Rightarrow\left|\int_{a}^{b} c f-c \int_{a}^{b} f\right|<U\left(c f, P_{\varepsilon}\right)-L\left(c f, P_{\varepsilon}\right)<\varepsilon
$$

Hence

$$
\left|\int_{a}^{b} c f-c \int_{a}^{b} f\right|=0 \Rightarrow \int_{a}^{b} c f-c \int_{a}^{b} f=0 \Rightarrow \int_{a}^{b} c f=c \int_{a}^{b} f
$$

Case 2: $c=0$.
The function $c f=0$ which is integrable and

$$
\int_{a}^{b} c f=\int_{a}^{b} 0=0=0 \cdot \int_{a}^{b} f=c \int_{a}^{b} f
$$

Case 3: $c<0$.
Try to do this case.

Theorem 2.4: [linearity II]

Let $f, g:[a, b] \rightarrow \mathbb{R}$ be integrable on $[a, b]$. Then $f+g$ is integrable on $[a, b]$, and

$$
\int_{a}^{b} f+g=\int_{a}^{b} f+\int_{a}^{b} g
$$

Proof:

Let $I \subseteq[a, b]$. Now, since

$$
\inf \{(f+g)(x): x \in I\} \geq \inf \{f(x): x \in I\}+\inf \{g(x): x \in I\}
$$

and

$$
\sup \{(f+g)(x): x \in I\} \leq \sup \{f(x): x \in I\}+\sup \{g(x): x \in I\}
$$

then

$$
U(f+g, P) \leq U(f, P)+U(g, P) \text { and } L(f, P)+L(g, P) \leq L(f+g, P) \text { for any partition } P \text { of }[a, b]
$$

Let $\varepsilon>0$ be given. Since f and g are integrable \exists a partitions P_{1} and P_{2} such that $U\left(f, P_{1}\right)-L\left(f, P_{1}\right)<\frac{\varepsilon}{2}$ and $U\left(f, P_{2}\right)-L\left(f, P_{2}\right)<\frac{\varepsilon}{2}$.
Now, let

$$
P_{\varepsilon}=P_{1} \cup P_{2} \Rightarrow U\left(f+g, P_{\varepsilon}\right) \leq U\left(f, P_{\varepsilon}\right)+U\left(g, P_{\varepsilon}\right) \text { and } L\left(f, P_{\varepsilon}\right)+L\left(g, P_{\varepsilon}\right) \leq L\left(f+g, P_{\varepsilon}\right)
$$

also,

$$
P_{\varepsilon}=P_{1} \cup P_{2} \Rightarrow U\left(f, P_{\varepsilon}\right) \leq U\left(f, P_{1}\right), \quad L\left(f, P_{1}\right) \leq L\left(f, P_{\varepsilon}\right), \quad U\left(g, P_{\varepsilon}\right) \leq U\left(g, P_{2}\right), \quad \text { and }, L\left(g, P_{2}\right) \leq L\left(g, P_{\varepsilon}\right)
$$

Now,

$$
\begin{aligned}
U\left(f+g, P_{\varepsilon}\right)-L\left(f+g, P_{\varepsilon}\right) & \leq U\left(f, P_{\varepsilon}\right)+U\left(g, P_{\varepsilon}\right)-\left[L\left(f, P_{\varepsilon}\right)+L\left(g, P_{\varepsilon}\right)\right] \\
& \leq\left[U\left(f, P_{\varepsilon}\right)-L\left(f, P_{\varepsilon}\right)\right]+\left[U\left(g, P_{\varepsilon}\right)-L\left(g, P_{\varepsilon}\right)\right] \\
& \leq\left[U\left(f, P_{1}\right)-L\left(f, P_{1}\right)\right]+\left[U\left(g, P_{2}\right)-L\left(g, P_{2}\right)\right] \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Hence $f+g$ is integrable. Now,

$$
\int_{a}^{b} f+g \leq U\left(f+g, P_{\varepsilon}\right) \leq U\left(f, P_{\varepsilon}\right)+U\left(g, P_{\varepsilon}\right) \leq L\left(f, P_{\varepsilon}\right)+L\left(g, P_{\varepsilon}\right)+\varepsilon \leq \int_{a}^{b} f+\int_{a}^{b} g+\varepsilon
$$

Hence

$$
\begin{equation*}
\int_{a}^{b} f+g-\left(\int_{a}^{b} f+\int_{a}^{b} g\right) \leq \varepsilon \tag{1}
\end{equation*}
$$

Also,

$$
\int_{a}^{b} f+\int_{a}^{b} g \leq U\left(f, P_{\varepsilon}\right)+U\left(g, P_{\varepsilon}\right) \leq L\left(f+g, P_{\varepsilon}\right)+\varepsilon \leq \int_{a}^{b} f+g+\varepsilon
$$

Hence

$$
\begin{equation*}
-\varepsilon \leq \int_{a}^{b} f+g-\left(\int_{a}^{b} f+\int_{a}^{b} g\right) \tag{2}
\end{equation*}
$$

By (1) and (2) we have

$$
-\varepsilon \leq \int_{a}^{b} f+g-\left(\int_{a}^{b} f+\int_{a}^{b} g\right) \leq \varepsilon
$$

Hence

$$
\left|\int_{a}^{b} f+g-\left(\int_{a}^{b} f+\int_{a}^{b} g\right)\right| \leq \varepsilon \Rightarrow\left|\int_{a}^{b} f+g-\left(\int_{a}^{b} f+\int_{a}^{b} g\right)\right|=0 \Rightarrow \int_{a}^{b} f+g=\int_{a}^{b} f+\int_{a}^{b} g
$$

Theorem 2.5: []

If f and g are integrable on $[a, b]$ and if $f(x) \leq g(x)$ for $x \in[a, b]$, then $\int_{a}^{b} f \leq \int_{a}^{b} g$.
Proof: Let $h(x)=g(x)-f(x)$ for all $x \in[a, b]$. Then by the linearity of Riemann integrable h is integrable. Now, $h(x) \geq 0$ for all $x \in[a, b]$, hence $0 \leq m=\inf \{h(x): x \in[a, b]\} \leq m_{i}=\inf \left\{h(x): x \in\left[x_{i-1}, x_{i}\right] \subset[a, b]\right\}$. Thus if P is any partition of $[a, b]$, we have $0 \leq L(h, P) \leq \int_{a}^{b} h$.

$$
\begin{aligned}
0 & \leq L(h, P) \\
& \leq \int_{a}^{b} h \quad h(x)=g(x)-f(x) \\
& =\int_{a}^{b}(g-f) \quad \text { by the linearity of the Riemann integral } \\
& =\int_{a}^{b} g-\int_{a}^{b} f \\
\int_{a}^{b} f & \leq \int_{a}^{b} g
\end{aligned}
$$

Theorem 2.6: [Integrability of the absolute value of an integrable function]

Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable on $[a, b]$. Then $|f|$ is integrable on $[a, b]$, and

$$
\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|
$$

Proof:

Let $I \subseteq[a, b]$. Now, since We have

$$
\sup \{|f(x)|: x \in I\}-\inf \{|f(x)|: x \in I\} \leq \sup \{f(x): x \in I\}-\inf \{f(x): x \in I\}
$$

Let $\varepsilon>0$ be given. Since f is integrable \exists a partition P_{ε} such that $U\left(f, P_{\varepsilon}\right)-L\left(f, P_{\varepsilon}\right)<\varepsilon$

Now, $U\left(|f|, P_{\varepsilon}\right)-L\left(|f|, P_{\varepsilon}\right) \leq U\left(f, P_{\varepsilon}\right)-L\left(f, P_{\varepsilon}\right)<\varepsilon$. Hence $|f|$ is integrable. Now,

$$
f(x) \leq|f(x)| \Rightarrow \int_{a}^{b} f(x) \leq \int_{a}^{b}|f(x)| \quad-f(x) \leq|f(x)| \Rightarrow-\int_{a}^{b} f(x) \leq \int_{a}^{b}|f(x)| .
$$

Hence $-\int_{a}^{b}|f(x)| \leq \int_{a}^{b} f(x) \leq \int_{a}^{b}|f(x)|$ Therefore $\left|\int_{a}^{b} f(x)\right| \leq \int_{a}^{b}|f(x)|$.

Theorem 2.7: [Integrability of the squarer of an integrable function]

Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable on $[a, b]$. Then f^{2} is integrable on $[a, b]$.

Proof:

Since f is bounded , then there exist $M>0$ such that $|f(x)| \leq M$ for all $x \in[a, b]$.
Now, let $I \subseteq[a, b]$. We have

$$
\sup \left\{f^{2}(x): x \in I\right\}-\inf \left\{f^{2}(x): x \in I\right\} \leq 2 M[\sup \{|f(x)|: x \in I\}-\inf \{|f(x)|: x \in I\}]
$$

Let $\varepsilon>0$ be given. Since $|f|$ is integrable \exists a partition P_{ε} such that $U\left(|f|, P_{\varepsilon}\right)-L\left(|f|, P_{\varepsilon}\right)<\frac{\varepsilon}{2 M}$

Now,

$$
U\left(f^{2}, P_{\varepsilon}\right)-L\left(f^{2}, P_{\varepsilon}\right) \leq 2 M U\left(|f|, P_{\varepsilon}\right)-L\left(|f|, P_{\varepsilon}\right)<2 M \frac{\varepsilon}{2 M}=\varepsilon
$$

Hence f^{2} is integrable.

