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5. Inverse Functions and Logarithms

5.1. Inverse Functions

5.1.1. One-to-one Functions

Definition 5.1: [One-to-one function]
A function 𝑓(𝑥) is called one-to-one if 𝑓(𝑥1) ∕= 𝑓(𝑥2) whenever 𝑥1 ∕= 𝑥2. Equivalently,a
function 𝑓(𝑥) is called one-to-one if 𝑓(𝑥1) = 𝑓(𝑥2) implies that 𝑥1 = 𝑥2.

Example 1. Which of the following functions are a one-to-one function

1. 𝑓(𝑥) =
√
𝑥.

2. 𝑓(𝑥) = 𝑥2.

Solution:

1. For 𝑓(𝑥) =
√
𝑥 we see that if 𝑥1 ∕= 𝑥2, then 𝑓(𝑥1) =

√
𝑥1 ∕= √

𝑥2 = 𝑓(𝑥2). Hence

𝑓(𝑥) =
√
𝑥

?
is a one-to-one function

2. For 𝑓(𝑥) = 𝑥2, since −1 ∕= 1, but 𝑓(−1) = (−1)2 = 1 = (1)2 = 𝑓(1). Hence

𝑓(𝑥) = 𝑥2,
?

is not a one-to-one.

□

    ▲ ◀ ▶ ▼   ■
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The Horizontal Line Test

A function 𝑦 = 𝑓(𝑥) is one-to-one if and only if

its graph intersects each horizontal line at most once.

Note 1: What is the definition saying is that it means that no two elements of the domain
of 𝑓 have the same image. Graphically, no horizontal line intersects the graph of 𝑓 more
that once (the so-called Horizontal Line Test).

Example 2. Which of the following functions are a one-to-one function

1. 𝑓(𝑥) =
√
𝑥.

?

2. 𝑓(𝑥) = 𝑥2.
?

Solution:

1. From the graph of 𝑓(𝑥) =
√
𝑥 we see no horizontal line intersects the graph of 𝑓(𝑥) =√

𝑥 more than once. Hence by the Horizontal Line Test 𝑓 is one-to-one.

2. From the graph of 𝑓(𝑥) = 𝑥2 we see there are horizontal line intersect the graph of
𝑓(𝑥) = 𝑥2 more than once. Hence by the Horizontal Line Test 𝑓 is not one-to-one.

□

    ▲ ◀ ▶ ▼   ■
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Definition 5.2: [Inverse Function]
For a one-to-one function 𝑓 with domain 𝐴 and range 𝐵 its inverse function 𝑓−1 (with
swapped domain 𝐵 and range 𝐴) is given by

𝑓−1(𝑦) = 𝑥
?

if and only if 𝑓(𝑥) = 𝑦
?

for, 𝑦 ∈ 𝐵.

The following Cancelation equations holds

𝑓−1 (𝑓(𝑥)) = 𝑥, for every 𝑥 ∈ 𝐴

𝑓
(
𝑓−1(𝑦)

)
= 𝑦, for every 𝑦 ∈ 𝐵.

Note 2: A function has an inverse if and only if it is one-to-one. A one-to-one function can
have only one inverse function. If a function 𝑓 has an inverse function we denote it by 𝑓−1.
The −1 used in this notation should not be mistaken for an exponent; that is, 𝑓−1 does

not mean 𝑓−1(𝑥) ∕= 1

𝑓(𝑥)
. The reciprocal

1

𝑓(𝑥)
may be denoted [𝑓(𝑥)]−1. It is important to

remember the following relationships.

domain of 𝑓−1 = range of 𝑓 or simply 𝐷(𝑓−1) = 𝑅(𝑓)
?

domain of 𝑓 = range of 𝑓−1 or simply 𝐷(𝑓) = 𝑅(𝑓−1).
?

    ▲ ◀ ▶ ▼   ■
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5.1.2. Guidelines for Finding Inverse Functions Informally

1. Solve 𝑦 = 𝑓(𝑥) for 𝑥.

2. Swap 𝑥 and 𝑦 in the resulting solution.

3. This resulting formula is 𝑦 = 𝑓−1(𝑥).

Example 3. Find the inverse function of 𝑓(𝑥) =
√
𝑥 + 1.

Solution: From the graph of 𝑓(𝑥) =
√
𝑥 + 1 we see it is one-to-one and hence has an inverse.

To find 𝑓−1.

𝑦 =
√
𝑥 + 1 Let 𝑦 = 𝑓(𝑥).

𝑦2 = 𝑥 + 1 Square both sides.

𝑦2 − 1 = 𝑥 Solve for 𝑥.

𝑥2 − 1 = 𝑦 Interchange(Swap) 𝑥 and 𝑦.

𝑓−1(𝑥) = 𝑥2 − 1 Replace 𝑦 by 𝑓−1(𝑥).

Hence the inverse function of 𝑓(𝑥) =
√
𝑥 + 1

?
is 𝑓−1(𝑥) = 𝑥2 − 1. □

    ▲ ◀ ▶ ▼   ■
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5.1.3. The Graph of the Inverse of a Function

The graphs of a function 𝑓 and 𝑓−1 are related to each other in the following way. If the
point (𝑎, 𝑏) lies on the graph of the function 𝑓 , then the point (𝑏, 𝑎) must lies on the graph
of the function 𝑓−1. This means that the graph of the function 𝑓−1 is a reflection of the
graph of the function 𝑓 about the line 𝑦 = 𝑥.
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5.2. Logarithmic Functions

Definition 5.3: [The Base 𝑎 Logarithmic Function]

The base 𝑎 logarithmic function 𝑓(𝑥) = log𝑎 𝑥,
?

is the inverse function of the exponential
function 𝑎𝑥 where the base 𝑎 > 1 and hence 𝑓(𝑥) = log𝑎 𝑥 is increasing, and one-to-one.
Accordingly, we have

1. log𝑎 𝑥 = 𝑦 ⇔ 𝑎𝑦 = 𝑥 2. 𝐷(log𝑎 𝑥) = (0,∞)

3. log𝑎(𝑎𝑥) = 𝑥 for every 𝑥 ∈ ℝ. 4. 𝑅(log𝑎 𝑥) = ℝ

5. 𝑎log𝑎 𝑥 = 𝑥 for every 𝑥 > 0. 6. log𝑎 𝑎 = 1.

A Family of logarithmic functions are graphed here.
?

Definition 5.4: [The Natural Logarithmic Function]

The natural logarithmic function 𝑓(𝑥) = ln𝑥,
?

is the inverse function of the exponential
function 𝑒𝑥 and hence 𝑓(𝑥) = ln𝑥 is increasing, and one-to-one. Accordingly, we have

1. ln𝑥 = 𝑦 ⇔ 𝑒𝑦 = 𝑥 2. 𝐷(ln𝑥) = (0,∞)

3. ln𝑥(𝑒𝑥) = 𝑥 for every 𝑥 ∈ ℝ. 4. 𝑅(ln𝑥) = ℝ

5. 𝑒ln𝑥 = 𝑥 for every 𝑥 > 0. 6. ln 𝑒 = 1.

    ▲ ◀ ▶ ▼   ■
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5.2.1. Properties of Logarithms

The Base 𝑎 Logarithm The Natural Logarithm

For any 𝑥 > 0 and 𝑦 > 0,

log𝑎(𝑥𝑦) = log𝑎 𝑥 + log𝑎 𝑦 ln(𝑥𝑦) = ln𝑥 + ln 𝑦 The Product Rule.

log𝑎

(
𝑥

𝑦

)
= log𝑎 𝑥− log𝑎 𝑦 ln

(
𝑥

𝑦

)
= ln𝑥− ln 𝑦 The Quotient Rule.

log𝑎 𝑥
𝑦 = 𝑦 log𝑎 𝑥 ln𝑥𝑦 = 𝑦 ln𝑥 The Power Rule.

log𝑎

(
1

𝑦

)
= − log𝑎 𝑦 ln

(
1

𝑦

)
= − ln 𝑦 The Reciprocal Rule.

log𝑎 𝑥 =
ln𝑥

ln 𝑎
=

log 𝑥

log 𝑎
=

log2 𝑥

log2 𝑎
The Cancelation Equation.

    ▲ ◀ ▶ ▼   ■
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Example 4. Solve the equation 𝑒2𝑥−1 = 2.

Solution:

𝑒2𝑥−1 = 2 Take ln for both sides

2𝑥− 1 = ln 2 ln (𝑒2𝑥−1) = 2𝑥− 1.

2𝑥 = 1 + ln 2 Solve for 𝑥.

𝑥 =
1 + ln 2

2
□

Example 5. Write the expression ln 𝑥− 2 ln 𝑦 + 3 ln 𝑧.

Solution:

ln𝑥− 2 ln 𝑦 + 2 ln 𝑧 = ln 𝑥− ln 𝑦2 + ln 𝑧3 Use the fact ln𝑥𝑦 = 𝑦 ln𝑥

= ln

(
𝑥

𝑦2

)
+ ln 𝑧3 Use the fact ln

(
𝑥

𝑦

)
= ln𝑥− ln 𝑦

= ln

(
𝑥

𝑦2
𝑧3
)

Use the fact ln(𝑥𝑦) = ln𝑥 + ln 𝑦.

= ln

(
𝑥𝑧3

𝑦2

)
Simplify.

□

    ▲ ◀ ▶ ▼   ■
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Example 6. Find the domain of 𝑓(𝑥) = ln (𝑥 + 1) − 1 and sketch its graph

Solution: For 𝑓(𝑥) = ln (𝑥 + 1)− 1 to be defined we must have 𝑥+ 1 > 0 and hence 𝑥 > −1.
Therefore 𝐷(ln (𝑥 + 1) − 1) = (−1,∞).
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-4

1 2 3-1-2
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𝑦 = ln𝑥
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□

    ▲ ◀ ▶ ▼   ■
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5.3. Inverse Trigonometric Functions

5.3.1. Inverse Sine

The function 𝑓(𝑥) = sin𝑥
?

is not one-to-one in general but if we restricted the domain to
the interval [−𝜋/2, 𝜋/2] the sine function will be a one-to-one and hence has an inverse.

Definition 5.5: [Inverse Sine]

The inverse sine function, denoted sin−1,
?

is defined by

𝑦 = sin−1 𝑥 ⇔ 𝑥 = sin 𝑦 for − 1 ≤ 𝑥 ≤ 1 and − 𝜋/2 ≤ 𝑦 ≤ 𝜋/2

The domain of the inverse sine function is [−1, 1], and the range is [−𝜋/2, 𝜋/2]. The inverse
sine function is also called the arcsine function , arcsin𝑥.

Prosperities of Inverse Sine

1. sin(sin−1 𝑥) = 𝑥 for − 1 ≤ 𝑥 ≤ 1

2. sin−1(sin𝑥) = 𝑥 for − 𝜋/2 ≤ 𝑥 ≤ 𝜋/2.

    ▲ ◀ ▶ ▼   ■
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5.4. Inverse Cosine

The function 𝑓(𝑥) = cos𝑥
?

is not one-to-one in generalbut if we restricted the domain to
the interval [0, 𝜋] the cosine function will be a one-to-one and hence has an inverse.

Definition 5.6: [Inverse Cosine]

The inverse cosine function, denoted cos−1,
?

is defined by

𝑦 = cos−1 𝑥 ⇔ 𝑥 = cos 𝑦 for − 1 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 𝜋

The domain of the inverse cosine function is [−1, 1], and the range is [0, 𝜋]. The inverse
cosine function is also called the arccosine function , arccos𝑥.

Prosperities of Inverse Cosine

1. cos(cos−1 𝑥) = 𝑥 for − 1 ≤ 𝑥 ≤ 1

2. cos−1(cos𝑥) = 𝑥 for 0 ≤ 𝑥 ≤ 𝜋.

    ▲ ◀ ▶ ▼   ■
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Example 7. Simplify the expressions sin (cos−1 𝑥) and cos (sin−1
(𝑥
2

)
).

Solution:

1. Let 𝑦 = cos−1 𝑥, then

𝑦 = cos−1 𝑥 ⇔ 𝑥 = cos 𝑦 for − 1 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 𝜋.

Using the fact that
𝑥

1
= 𝑥 = cos 𝑦 in the right triangle

to the right.Now

sin (cos−1 𝑥) = sin 𝑦 =

√
1− 𝑥2

1
=

√
1− 𝑥2. 𝑦

√
1− 𝑥2

𝑥

1

2. Let 𝑦 = sin−1
(𝑥
2

)
, then

𝑦 = sin−1
(𝑥
2

)
⇔ 𝑥

2
= sin 𝑦 for −1 ≤ 𝑥

2
≤ 1 and −𝜋/2 ≤ 𝑦 ≤ 𝜋/2.

Using the fact that
𝑥

2
= sin 𝑦 in the right triangle to the

right.Now

cos (sin−1 𝑥) = cos 𝑦 =

√
4− 𝑥2

2
.

𝑦

𝑥

√
4− 𝑥2

2

□

    ▲ ◀ ▶ ▼   ■
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Example 8. If 𝑓(𝑥) = cos−1 (2𝑥− 1), find the domain of 𝑓.

Solution: The function 𝑓 is defined if and only if −1 ≤ 2𝑥− 1 ≤ 1.

−1 ≤ 2𝑥− 1 ≤ 1 ⇔ 0 ≤ 2𝑥 ≤ 2

⇔ 0 ≤ 𝑥 ≤ 1

Hence the domain of 𝑓(𝑥) = cos−1 (2𝑥− 1), is [0, 1]

The graph of 𝑓(𝑥) = cos−1 (2𝑥− 1), is given below

1

2

3

4

1-1-2

�

𝜋−

𝑥

𝑦

□

    ▲ ◀ ▶ ▼   ■
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5.5. Inverse Tangent

The function 𝑓(𝑥) = tan𝑥
?

is not one-to-one in general but if we restricted the domain to
the interval (−𝜋/2, 𝜋/2) the tangent function will be a one-to-one and hence has an inverse.

Definition 5.7: [Inverse Tangent]

The inverse tangent function, denoted tan−1,
?

is defined by

𝑦 = tan−1 𝑥 ⇔ 𝑥 = tan 𝑦 for 𝑥 ∈ ℝ and − 𝜋/2 < 𝑦 < 𝜋/2

The domain of the inverse tangent function is ℝ, and the range is (−𝜋/2, 𝜋/2). The inverse
tangent function is also called the arctangent function , arctan𝑥.

Prosperities of Inverse Tangent

1. tan(tan−1 𝑥) = 𝑥 for every 𝑥.

2. tan−1(tan𝑥) = 𝑥 for − 𝜋/2 < 𝑥 < 𝜋/2.

    ▲ ◀ ▶ ▼   ■

π
2

−π
2

y = tan x

D(tan x) = (−π/2, π/2)

R(tan x) = R

x

y

y = −π
2

y = π
2

y = tan−1 xR(tan−1 x) = (−π/2, π/2)

D(tan−1 x) = R

x

y
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5.6. Inverse Cotangent

The function 𝑓(𝑥) = cot𝑥
?

is not one-to-one in general but if we restricted the domain
to the interval (−𝜋/2, 𝜋/2) the cotangent function will be a one-to-one and hence has an
inverse.

Definition 5.8: [Inverse Cotangent]

The inverse cotangent function, denoted cot−1,
?

is defined by

𝑦 = cot−1 𝑥 ⇔ 𝑥 = cot 𝑦 for 𝑥 ∈ ℝ and 0 < 𝑦 < 𝜋

The domain of the inverse cotangent function is ℝ, and the range is (0, 𝜋). The inverse
cotangent function is also called the arccotangent function , arccot𝑥.

Prosperities of Inverse Cotangent

1. cot(cot−1 𝑥) = 𝑥 for every 𝑥.

2. cot−1(cot𝑥) = 𝑥 for 0 < 𝑥 < 𝜋.

    ▲ ◀ ▶ ▼   ■

π
2 π 3π

2

y = cot x

D(cot x) = (0, π)

R(cot x) = R

x

y
−

−

π
2

π

y = cot−1 x

R(cot−1 x) = (0, π)

D(cot−1 x) = R

x

y
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5.7. Inverse Secant

The function 𝑓(𝑥) = sec𝑥
?

is not one-to-one in general but if we restricted the domain to
the interval [0, 𝜋/2) ∪ [𝜋, 3𝜋/2) the secant function will be a one-to-one and hence has an
inverse.

Definition 5.9: [Inverse Secant]

The inverse secant function, denoted sec−1,
?

is defined by

𝑦 = sec−1 𝑥 ⇔ 𝑥 = sec 𝑦 for ∣𝑥∣ ≥ 1 and 𝑦 ∈ [0, 𝜋/2) ∪ [𝜋, 3𝜋/2)

The domain of the inverse secant function is (−∞,−1] ∪ [1,∞), and the range is [0, 𝜋/2) ∪
[𝜋, 3𝜋/2). The inverse secant function is also called the arcsecant function , arcsec𝑥.

Prosperities of Inverse Secant

1. sec(sec−1 𝑥) = 𝑥 for every ∣𝑥∣ ≥ 1.

2. sec−1(sec𝑥) = 𝑥 for 𝑥 ∈ [0, 𝜋/2) ∪ [𝜋, 3𝜋/2).

    ▲ ◀ ▶ ▼   ■

π
2 π 3π

2
−π
2

y = secx

D(sec x) = [0, π/2) ∪ [π, 3π/2)

R(sec x) = {x | |x| ≥ 1}

x

y

1

2

3

4

5

-1

� π−
y = π

2

y = 3π
2

y = sec−1 x

R(sec−1 x) = [0, π/2) ∪ [π, 3π/2)

D(sec−1 x) = {x | |x| ≥ 1}

x

y
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5.8. Inverse Cosecant

The function 𝑓(𝑥) = csc𝑥
?

is not one-to-one in general but if we restricted the domain to
the interval (0, 𝜋/2]∪ (𝜋, 3𝜋/2] the cosecant function will be a one-to-one and hence has an
inverse.

Definition 5.10: [Inverse Cosecant]

The inverse cosecant function, denoted cot−1,
?

is defined by

𝑦 = csc−1 𝑥 ⇔ 𝑥 = csc 𝑦 for ∣𝑥∣ ≥ 1 and 𝑦 ∈ (0, 𝜋/2] ∪ (𝜋, 3𝜋/2]

The domain of the inverse cosecant function is (−∞,−1]∪ [1,∞), and the range is (0, 𝜋/2]∪
(𝜋, 3𝜋/2]. The inverse cosecant function is also called the arccosecant function , arccsc𝑥.

Prosperities of Inverse Cotangent

1. csc(csc−1 𝑥) = 𝑥 for every ∣𝑥∣ ≥ 1.

2. csc−1(csc𝑥) = 𝑥 for 𝑥 ∈ (0, 𝜋/2] ∪ (𝜋, 3𝜋/2].

    ▲ ◀ ▶ ▼   ■

π
2 π 3π

2 2π−π
2

1

-1 π
2 π 3π

2 2π−π
2

y = cscx

D(csc x) = (0, π/2] ∪ (π, 3π/2]

R(csc x) = {x | |x| ≥ 1}

x

y

�

�

3π
2

π
2

−

y = π

−
y = csc−1 x

R(csc−1 x) = (0, π/2] ∪ (π, 3π/2]

D(csc−1 x) = {x | |x| ≥ 1}

x

y
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