King Abdulaziz University

Math 110 Syllabus

Department of Mathematics

First Semester 2010-11

First Semester 1431-32

Textbook: Calculus, early transcendentals, Sixth Editions (2008), Authors: James Stewart

		Lectures				
Chapter Title	Section Title	Subtitle	Examples	Exercises	HW	HW on line: Due date (end of)
	Appendix A (2 Lectures)	Numbers, Intervals, solving Inequalities, and Absolute Value.	1-8	11 ,32,45	1-59 (Odd)	4,6,29,32,33,36,4 5,49,55 3 th Week
Appendices	Appendix B (1 Lecture)	Coordinate Geometry and Lines	1-8	13,41,51	2-60 (Even)	6,11,14,20,34,35, 38,52 3 th Week
	Appendix D (2 Lectures)	Trigonometry	1-6		2-82 (Even)	3,10,14,25,31,36, 42,59,66,69,73 3 th Week

		Lectures				
Chapter Title	Section Title	Subtitle	Examples	Exercises	HW	Due date (end of)
	1.1 Four Ways to Represents of Functions (1 Lecture)	Representation of Functions, Piecewise Defined Functions, Symmetry, Increasing & decreasing Functions	1-3, 6,7,8,10,11	1	2,5,8,20,21,25,27-31,32- 50,61-70	2,5,25,27,31,34 37,39,44,45,47 48,61,65,66 4 th Week
Chapter 1 Functions and Models	1.2 Mathematical Models (1 Lecture)	Polynomials, power, Rational, Algebraic, trigonometric, Exponential, logarithmic and transcendental functions	5,	2,4,8(f(x))	1,2,4,5,6,7,8,9,13	1,2,3,4,8,9 4 th Week
	1.3 New functions from old functions (2 Lectures)	Transformation, combination of functions	1-3,5-9	1,6	1-52 (even)	2,3,6,7,29,31,35 44,50,51,52 4 th Week
	1.5 Exponential functions (1 Lecture)	The number e	1-3	1,17	1-19	14-18 ^{5th} Week
	1.6 Inverse functions and logarithms	Definitions, Logarithmic functions, natural logarithm, inverse trigonometric functions	1-13	25,26	1-69 (odd)	5,7,15,18,21,23 22,25,33,35,39 47,51,53,54,66 67,71
	(2 Lectures)					5 th Week

		Lectures				
Chapter Title	Section Title	Subtitle	Examples	Exercises	HW	Due date (end of)
	2.2 The limit of a function (2 Lectures)	One side limits, infinite limits	1-10	4,8	2-20 (even), 25,27,28,29,31,32,33	5,6,7,9,10 17,21,27 ^{6th} Week
Chapter 2 Limits and	2.3 Calculating limits using the limit laws (2 Lectures)		1-11	27,37	2-44(even),46- 51,55,56,60,61	1,2,8,12,15 18,20,21,22 25,29,35,39 42,46,55 6 th Week
Derivatives	2.5 Continuity (2 Lectures)		1-10	4,32,37	1-51(odd),55	3,9,29,30,34 38,41,42, 7 th Week
	2.6 Limits at infinity; Horizontal asymptotes (2 Lectures)	Infinite limits at infinity	1-11		2-44(even), 47,48,57	3,4,15,19,21 23,25,27,33 34,41,43,44 57 7 th Week
	2.7 Derivatives and rate of change (1 Lecture)	Tangents, velocities, derivatives, rate of change	1-6		3,4,5-8,9,11,12,17,18,19 21,23,25,30,31-37,40,51	3,5,7,11,14 18,21,26,31,33 38,41 8 th Week
	2.8 The derivatives as a function (1 Lecture)	Other notation, how can a function fail to be differentiable ?, higher derivatives	1-7		1-53(odd),52,54	1-11,18,19 35-38,41-44 46,52 8 th Week

		Lectures				
Chapter Title	Section Title	Subtitle	Example s	Exercises	HW	Due date (end of)
	3.1 Derivatives of Polynomials and Exponential Functions (2 Lectures)	The power rule, The sum rule, Exponential functions, Derivative of the natural exponential function	1-9	20,24	3-32,33,35,38,39,42, 45,48,51,54,67,68,70 75	3,7,9,10,19 22,23,27,33 35,38,39,45 51,54,67,70 9 th Week
Chapter 3 Differentiation Rules	3.2 The Product and Quotient Rules (1 Lecture)	The product rule, The quotient rule	1-5		3-26, 30,32,34,43 41-50	1,4,7,11,14,15,25, 27,31 33,43,4748 9 th Week
	3.3 Derivatives of Trigonometric Functions (1 Lectures)	Derivatives of Trigonometric Functions	1,2,4,5,6		2-50 (Even)	5,7,9,15,34,41,43, 47,48 10 th Week
	3.4 The Chain Rule (2 Lectures)	Derivative of a Composite Function, The Power Rule Combined with the Chain Rule, The Chain Rule with Powers of a Function	1-9	9,13,18,40	2,5,9,26,36-42,44- 46,53,55,56	4,6,10,12,18,21,2 3,24,35,38,44,50 10 th Week
	3.5 Implicit Differentiation (2 Lectures)	Implicitly Defined Functions, Derivatives of Inverse Trigonometric Functions, Rational Powers of Differentiable Functions,	1-5		1-6,11-18, 24-28	9,23,30- 32,39,45,48,50,52 -54 10 th Week
	3.6 Derivatives of Logarithmic Functions (2 Lectures)	Logarithmic Differentiation, The Number e as a Limit	1-8	14,28	2-8,31-39	6-8,17-29, 43-49 11 th Week
	3.9 Related Rates (1 Lecture)		2,4		15,16,20	

		Lectures				
Chapter Title	Section Title	Subtitle	Examples	Exercises	HW	Due date (end of)
	4.1 Maximum and minimum values (2 Lectures)		1-10		3-7,9,13,16,26,28 29-44,46,47-62	15,19,26 28,29,34 35,37,38 39,48,54 59,60 12 th Week
Chapter 4 Applications of Derivatives	4.2 The Mean Value Theorem (1 Lecure)		1-6	7	2,4,5,8,11,13,15,16,1 7,20,23,25,29,33	3,4,9,10,1112,13, 14 23,24 12 th Week
	4.3 How Derivatives Affect the Shape of a Graph (2Lectures)	What does f'(x) say about f(x)? What does f''(x) say about f(x)?	1-8	32	1-53(odd)	1,2,5-8,11 13,17,18 21,31,34,39 41,52 12 th Week
	4.4 Intermediate Forms and L'Hôpital's Rule (2 Lectures)	Indeterminate products, differences, powers	1-9	53,56	1-63(odd)	2,7,10,15 21,29,43 48,49,55 63, 13 th Week
	4.5 Summary of curve sketching (1 Lecture)		1,5		9,14,19,25,37,50	
	4.7 Optimization Problems (1 Lecture)	,Application to business and economics	1,5		5,6,9,10,11,13,16,19,30 33,35,36,37,46,47,53 55,66,73	3,5,13,17 33,44,45 13 th Week
	4.9 Antiderivatives (1 Lectures)	Rectilinear motion	1-7		2-46(even),49-53 58-62(even)	1,4,5,6,10 11,15,24,36 39,40,50 13 th Week

Note:

- **1.** Instructor should cover all theoretical materials that related to the assigned examples.
- 2. All examples and exercises in the lectures part must be solved by the instructor.
- 3. All of the exams are Multiple Choices (MC).
- 4. Homework should be submitted online on or before the due date
- 5. Any student who misses 25% of the class will receive DN.
- 6. No Calculator will be allowed in any exam.

Marks distribution

- 1. First Exam (90 Min; 30 Marks); Second Exam (90 Min; 30 Marks); Final Exam (120 Min; 40 Marks)
- 2. Bonus Marks will be given to students who submit all the HW online.